Sequential activation of butyrylcholinesterase in rostral half somites and acetylcholinesterase in motoneurones and myotomes preceding growth of motor axons.

نویسندگان

  • P G Layer
  • R Alber
  • F G Rathjen
چکیده

By applying double-staining procedures that combine cholinesterase histochemistry (acetyl- and butyrylcholinesterase, respectively) as indicators of neuronal and myotomal tissue differentiation on longitudinal sections, together with detection of motor axons with antibodies to G4 antigen, we here describe the spatiotemporal expression of all components of the segmental motor units along the trunk of chicken embryos between stages 16-20. In particular, BChE expression is spatially elevated on the rostral part of the differentiating somite. About 2-3 somites more rostrally (and thus developmentally later), AChE is expressed almost simultaneously in a nonsegmented fashion in neuronal cell bodies of the ventral horn and in the corresponding dermomyotomes. There it is first detectable in a rostromedial sector. With a delay (4-6 somites compared with AChE in motoneurones), motor axons begin to grow exclusively through the BChE-rich sclerotomal space towards the AChE-activated myotome anlage. On motor axons, AChE detection is significantly retarded. We conclude that the rostrocaudal segmental asymmetry is not restricted to the sclerotomes (which other authors have described before by using different markers), but it extends into the dermomyotome, in which cholinesterases introduce an early subdivision. Hence, the entire process of first myotome differentiation, motor axon growth and establishment of first target contacts are taking place within the rostral half somite. We suggest that both cholinesterases might be involved in processes of motor unit differentiation and fibre guidance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons.

Eph receptor tyrosine kinases and ephrins are required for axon patterning and plasticity in the developing nervous system. Typically, Eph-ephrin interactions promote inhibitory events; for example, prohibiting the entry of neural cells into certain embryonic territories. Here, we show that distinct subsets of motor neurons that express EphA4 respond differently to ephrin-A5. EphA4-positive LMC...

متن کامل

Function of Neurolin (DM-GRASP/SC-1) in guidance of motor axons during zebrafish development.

Neurolin (zf DM-GRASP), a transmembrane protein with five extracellular immunoglobulin domains, is expressed by secondary but not primary motoneurons during zebrafish development. The spatiotemporally restricted expression pattern suggests that Neurolin plays a role in motor axon growth and guidance. To test this hypothesis, we injected zebrafish embryos with function-blocking Neurolin antibodi...

متن کامل

Effect of Gallic Acid on Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Diazinon in Vitro and in Vivo

Background and purpose: Diazinon is an organophosphate insecticide that binds to the acetylcholinesterase enzyme after metabolization causing its inactivation. Galic acid is a polyphenolic compound with nucleophilic properties. The aim of this study was to investigate the effects of gallic acid on reactivation of acetylcholine and butyrylcholinesterase inhibited by diazinon in mice and human se...

متن کامل

Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3.

We have investigated the mechanisms involved in generating hindbrain motoneurone subtypes, focusing on somatic motoneurones, which are confined to the caudal hindbrain within rhombomeres 5-8. Following heterotopic transplantation of rhombomeres along the rostrocaudal axis at various developmental stages, we have found that the capacity of rhombomeres to generate somatic motoneurones is labile a...

متن کامل

chondroitin sulfate proteoglycan, collagen IX and peanut agglutinin (PNA)-binding molecules inhibit axonal growth and neural crest cell migration in vitro

The migration of neural crest cells is a co-ordinated process controlled by various signals present in the immediate environment of the migratory route. Crest cells move along specific pathways that are highly segmented (Bronner-Fraser, 1993). In the trunk, crest cells emerging from the neural tube move selectively through the rostral half somite (BronnerFraser, 1986; Rickmann et al., 1985), al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 1988